\(\int \cos ^4(c+d x) (a+b \sec (c+d x))^{5/2} (A+C \sec ^2(c+d x)) \, dx\) [732]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 587 \[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{5/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {(a-b) \sqrt {a+b} \left (15 A b^2+4 a^2 (71 A+108 C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{192 a d}+\frac {\sqrt {a+b} \left (15 A b^3+24 a^3 (3 A+4 C)+4 a^2 b (71 A+108 C)+2 a b^2 (59 A+192 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{192 a d}+\frac {\sqrt {a+b} \left (5 A b^4-120 a^2 b^2 (A+2 C)-16 a^4 (3 A+4 C)\right ) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{64 a^2 d}+\frac {b \left (15 A b^2+4 a^2 (71 A+108 C)\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{192 a d}+\frac {\left (5 A b^2+4 a^2 (3 A+4 C)\right ) \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{32 d}+\frac {5 A b \cos ^2(c+d x) (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{24 d}+\frac {A \cos ^3(c+d x) (a+b \sec (c+d x))^{5/2} \sin (c+d x)}{4 d} \]

[Out]

5/24*A*b*cos(d*x+c)^2*(a+b*sec(d*x+c))^(3/2)*sin(d*x+c)/d+1/4*A*cos(d*x+c)^3*(a+b*sec(d*x+c))^(5/2)*sin(d*x+c)
/d+1/192*(a-b)*(15*A*b^2+4*a^2*(71*A+108*C))*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a
-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d+1/192*(15*A*b^3+24*
a^3*(3*A+4*C)+4*a^2*b*(71*A+108*C)+2*a*b^2*(59*A+192*C))*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/
2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d+1/64*(5
*A*b^4-120*a^2*b^2*(A+2*C)-16*a^4*(3*A+4*C))*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,
((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d+1/192*b*
(15*A*b^2+4*a^2*(71*A+108*C))*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/a/d+1/32*(5*A*b^2+4*a^2*(3*A+4*C))*cos(d*x+c)*
sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 1.83 (sec) , antiderivative size = 587, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {4180, 4179, 4189, 4143, 4006, 3869, 3917, 4089} \[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{5/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {(a-b) \sqrt {a+b} \left (4 a^2 (71 A+108 C)+15 A b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{192 a d}+\frac {b \left (4 a^2 (71 A+108 C)+15 A b^2\right ) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{192 a d}+\frac {\left (4 a^2 (3 A+4 C)+5 A b^2\right ) \sin (c+d x) \cos (c+d x) \sqrt {a+b \sec (c+d x)}}{32 d}+\frac {\sqrt {a+b} \left (-16 a^4 (3 A+4 C)-120 a^2 b^2 (A+2 C)+5 A b^4\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{64 a^2 d}+\frac {\sqrt {a+b} \left (24 a^3 (3 A+4 C)+4 a^2 b (71 A+108 C)+2 a b^2 (59 A+192 C)+15 A b^3\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{192 a d}+\frac {A \sin (c+d x) \cos ^3(c+d x) (a+b \sec (c+d x))^{5/2}}{4 d}+\frac {5 A b \sin (c+d x) \cos ^2(c+d x) (a+b \sec (c+d x))^{3/2}}{24 d} \]

[In]

Int[Cos[c + d*x]^4*(a + b*Sec[c + d*x])^(5/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

((a - b)*Sqrt[a + b]*(15*A*b^2 + 4*a^2*(71*A + 108*C))*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/
Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(
192*a*d) + (Sqrt[a + b]*(15*A*b^3 + 24*a^3*(3*A + 4*C) + 4*a^2*b*(71*A + 108*C) + 2*a*b^2*(59*A + 192*C))*Cot[
c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/
(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(192*a*d) + (Sqrt[a + b]*(5*A*b^4 - 120*a^2*b^2*(A + 2*C) -
16*a^4*(3*A + 4*C))*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(
a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(64*a^2*d) + (b*(15*A*b^
2 + 4*a^2*(71*A + 108*C))*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(192*a*d) + ((5*A*b^2 + 4*a^2*(3*A + 4*C))*Co
s[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(32*d) + (5*A*b*Cos[c + d*x]^2*(a + b*Sec[c + d*x])^(3/2)*Si
n[c + d*x])/(24*d) + (A*Cos[c + d*x]^3*(a + b*Sec[c + d*x])^(5/2)*Sin[c + d*x])/(4*d)

Rule 3869

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4006

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4143

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[Csc[e + f*x
]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rule 4179

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b*
m - a*B*n - (b*B*n + a*(C*n + A*(n + 1)))*Csc[e + f*x] - b*(C*n + A*(m + n + 1))*Csc[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && LeQ[n, -1]

Rule 4180

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dis
t[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b*m - a*(C*n + A*(n + 1))*Csc[e +
f*x] - b*(C*n + A*(m + n + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, C}, x] && NeQ[a^2 - b^2,
 0] && GtQ[m, 0] && LeQ[n, -1]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {A \cos ^3(c+d x) (a+b \sec (c+d x))^{5/2} \sin (c+d x)}{4 d}+\frac {1}{4} \int \cos ^3(c+d x) (a+b \sec (c+d x))^{3/2} \left (\frac {5 A b}{2}+a (3 A+4 C) \sec (c+d x)+\frac {1}{2} b (A+8 C) \sec ^2(c+d x)\right ) \, dx \\ & = \frac {5 A b \cos ^2(c+d x) (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{24 d}+\frac {A \cos ^3(c+d x) (a+b \sec (c+d x))^{5/2} \sin (c+d x)}{4 d}+\frac {1}{12} \int \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (\frac {3}{4} \left (5 A b^2+4 a^2 (3 A+4 C)\right )+\frac {1}{2} a b (31 A+48 C) \sec (c+d x)+\frac {1}{4} b^2 (11 A+48 C) \sec ^2(c+d x)\right ) \, dx \\ & = \frac {\left (5 A b^2+4 a^2 (3 A+4 C)\right ) \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{32 d}+\frac {5 A b \cos ^2(c+d x) (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{24 d}+\frac {A \cos ^3(c+d x) (a+b \sec (c+d x))^{5/2} \sin (c+d x)}{4 d}+\frac {1}{24} \int \frac {\cos (c+d x) \left (\frac {1}{8} \left (15 A b^3+8 a^2 \left (\frac {71 A b}{2}+54 b C\right )\right )+\frac {1}{4} a \left (12 a^2 (3 A+4 C)+b^2 (161 A+288 C)\right ) \sec (c+d x)+\frac {1}{8} b \left (12 a^2 (3 A+4 C)+b^2 (59 A+192 C)\right ) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {b \left (15 A b^2+4 a^2 (71 A+108 C)\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{192 a d}+\frac {\left (5 A b^2+4 a^2 (3 A+4 C)\right ) \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{32 d}+\frac {5 A b \cos ^2(c+d x) (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{24 d}+\frac {A \cos ^3(c+d x) (a+b \sec (c+d x))^{5/2} \sin (c+d x)}{4 d}-\frac {\int \frac {\frac {3}{16} \left (5 A b^4-120 a^2 b^2 (A+2 C)-16 a^4 (3 A+4 C)\right )-\frac {1}{8} a b \left (12 a^2 (3 A+4 C)+b^2 (59 A+192 C)\right ) \sec (c+d x)+\frac {1}{16} b^2 \left (15 A b^2+4 a^2 (71 A+108 C)\right ) \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{24 a} \\ & = \frac {b \left (15 A b^2+4 a^2 (71 A+108 C)\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{192 a d}+\frac {\left (5 A b^2+4 a^2 (3 A+4 C)\right ) \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{32 d}+\frac {5 A b \cos ^2(c+d x) (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{24 d}+\frac {A \cos ^3(c+d x) (a+b \sec (c+d x))^{5/2} \sin (c+d x)}{4 d}-\frac {\int \frac {\frac {3}{16} \left (5 A b^4-120 a^2 b^2 (A+2 C)-16 a^4 (3 A+4 C)\right )+\left (-\frac {1}{16} b^2 \left (15 A b^2+4 a^2 (71 A+108 C)\right )-\frac {1}{8} a b \left (12 a^2 (3 A+4 C)+b^2 (59 A+192 C)\right )\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{24 a}-\frac {\left (b^2 \left (15 A b^2+4 a^2 (71 A+108 C)\right )\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{384 a} \\ & = \frac {(a-b) \sqrt {a+b} \left (15 A b^2+4 a^2 (71 A+108 C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{192 a d}+\frac {b \left (15 A b^2+4 a^2 (71 A+108 C)\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{192 a d}+\frac {\left (5 A b^2+4 a^2 (3 A+4 C)\right ) \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{32 d}+\frac {5 A b \cos ^2(c+d x) (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{24 d}+\frac {A \cos ^3(c+d x) (a+b \sec (c+d x))^{5/2} \sin (c+d x)}{4 d}-\frac {\left (5 A b^4-120 a^2 b^2 (A+2 C)-16 a^4 (3 A+4 C)\right ) \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx}{128 a}+\frac {\left (b \left (15 A b^3+24 a^3 (3 A+4 C)+4 a^2 b (71 A+108 C)+2 a b^2 (59 A+192 C)\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{384 a} \\ & = \frac {(a-b) \sqrt {a+b} \left (15 A b^2+4 a^2 (71 A+108 C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{192 a d}+\frac {\sqrt {a+b} \left (15 A b^3+24 a^3 (3 A+4 C)+4 a^2 b (71 A+108 C)+2 a b^2 (59 A+192 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{192 a d}+\frac {\sqrt {a+b} \left (5 A b^4-120 a^2 b^2 (A+2 C)-16 a^4 (3 A+4 C)\right ) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{64 a^2 d}+\frac {b \left (15 A b^2+4 a^2 (71 A+108 C)\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{192 a d}+\frac {\left (5 A b^2+4 a^2 (3 A+4 C)\right ) \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{32 d}+\frac {5 A b \cos ^2(c+d x) (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{24 d}+\frac {A \cos ^3(c+d x) (a+b \sec (c+d x))^{5/2} \sin (c+d x)}{4 d} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(4992\) vs. \(2(587)=1174\).

Time = 28.06 (sec) , antiderivative size = 4992, normalized size of antiderivative = 8.50 \[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{5/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Result too large to show} \]

[In]

Integrate[Cos[c + d*x]^4*(a + b*Sec[c + d*x])^(5/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

(Cos[c + d*x]^4*(a + b*Sec[c + d*x])^(5/2)*(A + C*Sec[c + d*x]^2)*((17*a*A*b*Sin[c + d*x])/48 + ((48*a^2*A + 5
9*A*b^2 + 48*a^2*C)*Sin[2*(c + d*x)])/96 + (17*a*A*b*Sin[3*(c + d*x)])/48 + (a^2*A*Sin[4*(c + d*x)])/16))/(d*(
b + a*Cos[c + d*x])^2*(A + 2*C + A*Cos[2*c + 2*d*x])) + (Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*((3*a^3*A)/(4*S
qrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (161*a*A*b^2)/(48*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) +
 (a^3*C)/(Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (6*a*b^2*C)/(Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*
x]]) + (89*a^2*A*b*Sqrt[Sec[c + d*x]])/(48*Sqrt[b + a*Cos[c + d*x]]) + (133*A*b^3*Sqrt[Sec[c + d*x]])/(192*Sqr
t[b + a*Cos[c + d*x]]) + (11*a^2*b*C*Sqrt[Sec[c + d*x]])/(4*Sqrt[b + a*Cos[c + d*x]]) + (2*b^3*C*Sqrt[Sec[c +
d*x]])/Sqrt[b + a*Cos[c + d*x]] + (71*a^2*A*b*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(48*Sqrt[b + a*Cos[c + d*x]
]) + (5*A*b^3*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(64*Sqrt[b + a*Cos[c + d*x]]) + (9*a^2*b*C*Cos[2*(c + d*x)]
*Sqrt[Sec[c + d*x]])/(4*Sqrt[b + a*Cos[c + d*x]]))*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(a + b*Sec[c + d*x])^
(5/2)*(A + C*Sec[c + d*x]^2)*(a*b*(a + b)*(15*A*b^2 + 4*a^2*(71*A + 108*C))*EllipticE[ArcSin[Tan[(c + d*x)/2]]
, (a - b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + b*(a + b)*(-30
*a*A*b^2 + 15*A*b^3 - 24*a^3*(3*A + 4*C) - 4*a^2*b*(53*A + 84*C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/
(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + 3*(5*A*b^4 - 120*a^2*b^2
*(A + 2*C) - 16*a^4*(3*A + 4*C))*((a - b)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*a*EllipticP
i[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)])*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/
2]^2)/(a + b)] + a*b*(15*A*b^2 + 4*a^2*(71*A + 108*C))*(b + a*Cos[c + d*x])*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^
(3/2)*Sec[c + d*x]*Tan[(c + d*x)/2]))/(96*a^2*d*(b + a*Cos[c + d*x])^3*(A + 2*C + A*Cos[2*c + 2*d*x])*(Sec[(c
+ d*x)/2]^2)^(3/2)*Sec[c + d*x]^(9/2)*((Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c +
d*x]]*Sin[c + d*x]*(a*b*(a + b)*(15*A*b^2 + 4*a^2*(71*A + 108*C))*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/
(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + b*(a + b)*(-30*a*A*b^2 +
 15*A*b^3 - 24*a^3*(3*A + 4*C) - 4*a^2*b*(53*A + 84*C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*S
ec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + 3*(5*A*b^4 - 120*a^2*b^2*(A + 2*C)
 - 16*a^4*(3*A + 4*C))*((a - b)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*a*EllipticPi[-1, ArcS
in[Tan[(c + d*x)/2]], (a - b)/(a + b)])*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a +
 b)] + a*b*(15*A*b^2 + 4*a^2*(71*A + 108*C))*(b + a*Cos[c + d*x])*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(3/2)*Sec[
c + d*x]*Tan[(c + d*x)/2]))/(192*a*(b + a*Cos[c + d*x])^(3/2)*(Sec[(c + d*x)/2]^2)^(3/2)) - (Sqrt[Cos[c + d*x]
*Sec[(c + d*x)/2]^2]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(a*b*(a + b)*(15*A*b^2 + 4*a^2*(71
*A + 108*C))*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x]
)*Sec[(c + d*x)/2]^2)/(a + b)] + b*(a + b)*(-30*a*A*b^2 + 15*A*b^3 - 24*a^3*(3*A + 4*C) - 4*a^2*b*(53*A + 84*C
))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c +
 d*x)/2]^2)/(a + b)] + 3*(5*A*b^4 - 120*a^2*b^2*(A + 2*C) - 16*a^4*(3*A + 4*C))*((a - b)*EllipticF[ArcSin[Tan[
(c + d*x)/2]], (a - b)/(a + b)] - 2*a*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)])*Sec[(c + d*x)
/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + a*b*(15*A*b^2 + 4*a^2*(71*A + 108*C))*(b + a*C
os[c + d*x])*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(3/2)*Sec[c + d*x]*Tan[(c + d*x)/2]))/(64*a^2*Sqrt[b + a*Cos[c
+ d*x]]*(Sec[(c + d*x)/2]^2)^(3/2)) + (Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*(Cos[(c + d*x)/2]^2*Sec[c + d*x])
^(3/2)*(-(Sec[(c + d*x)/2]^2*Sin[c + d*x]) + Cos[c + d*x]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])*(a*b*(a + b)*(1
5*A*b^2 + 4*a^2*(71*A + 108*C))*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[(
(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + b*(a + b)*(-30*a*A*b^2 + 15*A*b^3 - 24*a^3*(3*A + 4*C) - 4
*a^2*b*(53*A + 84*C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos
[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + 3*(5*A*b^4 - 120*a^2*b^2*(A + 2*C) - 16*a^4*(3*A + 4*C))*((a - b)*El
lipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*a*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a +
 b)])*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + a*b*(15*A*b^2 + 4*a^2*(71*A
 + 108*C))*(b + a*Cos[c + d*x])*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(3/2)*Sec[c + d*x]*Tan[(c + d*x)/2]))/(192*a
^2*Sqrt[b + a*Cos[c + d*x]]*(Sec[(c + d*x)/2]^2)^(3/2)) + (Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*(a*b*(a + b)*
(15*A*b^2 + 4*a^2*(71*A + 108*C))*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt
[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + b*(a + b)*(-30*a*A*b^2 + 15*A*b^3 - 24*a^3*(3*A + 4*C) -
 4*a^2*b*(53*A + 84*C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*C
os[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + 3*(5*A*b^4 - 120*a^2*b^2*(A + 2*C) - 16*a^4*(3*A + 4*C))*((a - b)*
EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*a*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a
 + b)])*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + a*b*(15*A*b^2 + 4*a^2*(71
*A + 108*C))*(b + a*Cos[c + d*x])*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(3/2)*Sec[c + d*x]*Tan[(c + d*x)/2])*(-(Co
s[(c + d*x)/2]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(192*a^2*Sqrt[b
 + a*Cos[c + d*x]]*(Sec[(c + d*x)/2]^2)^(3/2)*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]) + (Sqrt[Cos[c + d*x]*Sec[
(c + d*x)/2]^2]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*((a*b*(15*A*b^2 + 4*a^2*(71*A + 108*C))*(b + a*Cos[c + d
*x])*Sec[(c + d*x)/2]^2*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(3/2)*Sec[c + d*x])/2 + a*b*(a + b)*(15*A*b^2 + 4*a^
2*(71*A + 108*C))*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c +
 d*x])*Sec[(c + d*x)/2]^2)/(a + b)]*Tan[(c + d*x)/2] + b*(a + b)*(-30*a*A*b^2 + 15*A*b^3 - 24*a^3*(3*A + 4*C)
- 4*a^2*b*(53*A + 84*C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*
Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)]*Tan[(c + d*x)/2] + 3*(5*A*b^4 - 120*a^2*b^2*(A + 2*C) - 16*a^4*(3*A
 + 4*C))*((a - b)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*a*EllipticPi[-1, ArcSin[Tan[(c + d*
x)/2]], (a - b)/(a + b)])*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)]*Tan[(c +
d*x)/2] + (3*a*b*(15*A*b^2 + 4*a^2*(71*A + 108*C))*(b + a*Cos[c + d*x])*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*
Sec[c + d*x]*Tan[(c + d*x)/2]*(-(Sec[(c + d*x)/2]^2*Sin[c + d*x]) + Cos[c + d*x]*Sec[(c + d*x)/2]^2*Tan[(c + d
*x)/2]))/2 + (a*b*(a + b)*(15*A*b^2 + 4*a^2*(71*A + 108*C))*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b
)]*Sec[(c + d*x)/2]^2*(-((a*Sec[(c + d*x)/2]^2*Sin[c + d*x])/(a + b)) + ((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]
^2*Tan[(c + d*x)/2])/(a + b)))/(2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)]) + (b*(a + b)*(-30*a
*A*b^2 + 15*A*b^3 - 24*a^3*(3*A + 4*C) - 4*a^2*b*(53*A + 84*C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a
 + b)]*Sec[(c + d*x)/2]^2*(-((a*Sec[(c + d*x)/2]^2*Sin[c + d*x])/(a + b)) + ((b + a*Cos[c + d*x])*Sec[(c + d*x
)/2]^2*Tan[(c + d*x)/2])/(a + b)))/(2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)]) + (3*(5*A*b^4 -
 120*a^2*b^2*(A + 2*C) - 16*a^4*(3*A + 4*C))*((a - b)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2
*a*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)])*Sec[(c + d*x)/2]^2*(-((a*Sec[(c + d*x)/2]^2*Sin[
c + d*x])/(a + b)) + ((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/(a + b)))/(2*Sqrt[((b + a*Cos[
c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)]) + (b*(a + b)*(-30*a*A*b^2 + 15*A*b^3 - 24*a^3*(3*A + 4*C) - 4*a^2*b*(5
3*A + 84*C))*Sec[(c + d*x)/2]^4*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)])/(2*Sqrt[1 - Tan[(c +
d*x)/2]^2]*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)]) + (a*b*(a + b)*(15*A*b^2 + 4*a^2*(71*A + 108*C))*Se
c[(c + d*x)/2]^4*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)]*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)
/(a + b)])/(2*Sqrt[1 - Tan[(c + d*x)/2]^2]) + 3*(5*A*b^4 - 120*a^2*b^2*(A + 2*C) - 16*a^4*(3*A + 4*C))*Sec[(c
+ d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)]*(((a - b)*Sec[(c + d*x)/2]^2)/(2*Sqrt[1 -
Tan[(c + d*x)/2]^2]*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)]) - (a*Sec[(c + d*x)/2]^2)/(Sqrt[1 - Tan[(c
+ d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)])) - a^2*b*(15*A*b^2 + 4*a
^2*(71*A + 108*C))*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(3/2)*Tan[(c + d*x)/2]*Tan[c + d*x] + a*b*(15*A*b^2 + 4*a
^2*(71*A + 108*C))*(b + a*Cos[c + d*x])*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(3/2)*Sec[c + d*x]*Tan[(c + d*x)/2]*
Tan[c + d*x]))/(96*a^2*Sqrt[b + a*Cos[c + d*x]]*(Sec[(c + d*x)/2]^2)^(3/2))))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(5461\) vs. \(2(538)=1076\).

Time = 495.72 (sec) , antiderivative size = 5462, normalized size of antiderivative = 9.30

method result size
default \(\text {Expression too large to display}\) \(5462\)

[In]

int(cos(d*x+c)^4*(a+b*sec(d*x+c))^(5/2)*(A+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F]

\[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{5/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{4} \,d x } \]

[In]

integrate(cos(d*x+c)^4*(a+b*sec(d*x+c))^(5/2)*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

integral((C*b^2*cos(d*x + c)^4*sec(d*x + c)^4 + 2*C*a*b*cos(d*x + c)^4*sec(d*x + c)^3 + 2*A*a*b*cos(d*x + c)^4
*sec(d*x + c) + A*a^2*cos(d*x + c)^4 + (C*a^2 + A*b^2)*cos(d*x + c)^4*sec(d*x + c)^2)*sqrt(b*sec(d*x + c) + a)
, x)

Sympy [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{5/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**4*(a+b*sec(d*x+c))**(5/2)*(A+C*sec(d*x+c)**2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{5/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{4} \,d x } \]

[In]

integrate(cos(d*x+c)^4*(a+b*sec(d*x+c))^(5/2)*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c) + a)^(5/2)*cos(d*x + c)^4, x)

Giac [F]

\[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{5/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{4} \,d x } \]

[In]

integrate(cos(d*x+c)^4*(a+b*sec(d*x+c))^(5/2)*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c) + a)^(5/2)*cos(d*x + c)^4, x)

Mupad [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{5/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^4\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

[In]

int(cos(c + d*x)^4*(A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(5/2),x)

[Out]

int(cos(c + d*x)^4*(A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(5/2), x)